11 research outputs found

    Visual Perception and Cognition in Image-Guided Intervention

    Get PDF
    Surgical image visualization and interaction systems can dramatically affect the efficacy and efficiency of surgical training, planning, and interventions. This is even more profound in the case of minimally-invasive surgery where restricted access to the operative field in conjunction with limited field of view necessitate a visualization medium to provide patient-specific information at any given moment. Unfortunately, little research has been devoted to studying human factors associated with medical image displays and the need for a robust, intuitive visualization and interaction interfaces has remained largely unfulfilled to this day. Failure to engineer efficient medical solutions and design intuitive visualization interfaces is argued to be one of the major barriers to the meaningful transfer of innovative technology to the operating room. This thesis was, therefore, motivated by the need to study various cognitive and perceptual aspects of human factors in surgical image visualization systems, to increase the efficiency and effectiveness of medical interfaces, and ultimately to improve patient outcomes. To this end, we chose four different minimally-invasive interventions in the realm of surgical training, planning, training for planning, and navigation: The first chapter involves the use of stereoendoscopes to reduce morbidity in endoscopic third ventriculostomy. The results of this study suggest that, compared with conventional endoscopes, the detection of the basilar artery on the surface of the third ventricle can be facilitated with the use of stereoendoscopes, increasing the safety of targeting in third ventriculostomy procedures. In the second chapter, a contour enhancement technique is described to improve preoperative planning of arteriovenous malformation interventions. The proposed method, particularly when combined with stereopsis, is shown to increase the speed and accuracy of understanding the spatial relationship between vascular structures. In the third chapter, an augmented-reality system is proposed to facilitate the training of planning brain tumour resection. The results of our user study indicate that the proposed system improves subjects\u27 performance, particularly novices\u27, in formulating the optimal point of entry and surgical path independent of the sensorimotor tasks performed. In the last chapter, the role of fully-immersive simulation environments on the surgeons\u27 non-technical skills to perform vertebroplasty procedure is investigated. Our results suggest that while training surgeons may increase their technical skills, the introduction of crisis scenarios significantly disturbs the performance, emphasizing the need of realistic simulation environments as part of training curriculum

    Perceptual Enhancement of Arteriovenous Malformation in MRI Angiography Displays

    Get PDF
    The importance of presenting medical images in an intuitive and usable manner during a procedure is essential. However, most medical visualization interfaces, particularly those designed for minimally-invasive surgery, suffer from a number of issues as a consequence of disregarding the human perceptual, cognitive, and motor system\u27s limitations. This matter is even more prominent when human visual system is overlooked during the design cycle. One example is the visualization of the neuro-vascular structures in MR angiography (MRA) images. This study investigates perceptual performance in the usability of a display to visualize blood vessels in MRA volumes using a contour enhancement technique. Our results show that when contours are enhanced, our participants, in general, can perform faster with higher level of accuracy when judging the connectivity of different vessels. One clinical outcome of such perceptual enhancement is improvement of spatial reasoning needed for planning complex neuro-vascular operations such as treating Arteriovenous Malformations (AVMs). The success of an AVM intervention greatly depends on fully understanding the anatomy of vascular structures. However, poor visualization of pre-operative MRA images makes the planning of such a treatment quite challenging

    Visual enhancement of MR angiography images to facilitate planning of arteriovenous malformation interventions

    No full text
    © 2015 ACM. The primary purpose of medical image visualization is to improve patient outcomes by facilitating the inspection, analysis, and interpretation of patient data. This is only possible if the users\u27 perceptual and cognitive limitations are taken into account during every step of design, implementation, and evaluation of interactive displays. Visualization of medical images, if executed effectively and efficiently, can empower physicians to explore patient data rapidly and accurately with minimal cognitive effort. This article describes a specific case study in biomedical visualization system design and evaluation, which is the visualization of MR angiography images for planning arteriovenous malformation (AVM) interventions. The success of an AVM intervention greatly depends on the surgeon gaining a full understanding of the anatomy of the malformation and its surrounding structures. Accordingly, the purpose of this study was to investigate the usability of visualization modalities involving contour enhancement and stereopsis in the identification and localization of vascular structures using objective user studies. Our preliminary results indicate that contour enhancement, particularly when combined with stereopsis, results in improved performance enhancement of the perception of connectivity and relative depth between different structures

    Training for planning tumour resection: Augmented reality and human factors

    No full text
    © 1964-2012 IEEE. Planning surgical interventions is a complex task, demanding a high degree of perceptual, cognitive, and sensorimotor skills to reduce intra- and post-operative complications. This process requires spatial reasoning to coordinate between the preoperatively acquired medical images and patient reference frames. In the case of neurosurgical interventions, traditional approaches to planning tend to focus on providing a means for visualizing medical images, but rarely support transformation between different spatial reference frames. Thus, surgeons often rely on their previous experience and intuition as their sole guide is to perform mental transformation. In case of junior residents, this may lead to longer operation times or increased chance of error under additional cognitive demands. In this paper, we introduce a mixed augmented-/virtual-reality system to facilitate training for planning a common neurosurgical procedure, brain tumour resection. The proposed system is designed and evaluated with human factors explicitly in mind, alleviating the difficulty of mental transformation. Our results indicate that, compared to conventional planning environments, the proposed system greatly improves the nonclinicians\u27 performance, independent of the sensorimotor tasks performed (p \u3c 0.01). Furthermore, the use of the proposed system by clinicians resulted in a significant reduction in time to perform clinically relevant tasks (p \u3c 0.05). These results demonstrate the role of mixed-reality systems in assisting residents to develop necessary spatial reasoning skills needed for planning brain tumour resection, improving patient outcomes

    Vertebroplasty Performance on Simulator for 19 Surgeons Using Hierarchical Task Analysis

    No full text
    © 2015 IEEE. We present a unique simulator-based methodology for assessing both technical and nontechnical (cognitive) skills for surgical trainees while immersed in a complete medical simulation environment. Further, we have included two crisis scenarios which allow for the evaluation of the effect of cognitive strategy selection on the low-level surgical skills. Training these mixed-mode scenarios can thereby be evaluated on our platform, allowing for improved assessment and a stronger foundation for credentialing, with the potential to reduce the occurrence of adverse events in the operating room. Scientific evaluation and validation of our work is conducted together with 19 junior surgeons in order to achieve the following goals: 1) to provide a qualitative measure of usability, 2) to assess vertebroplasty technical performance of the surgeon, and 3) to explore the relationship between mental workload and surgical performance during crisis. Our results indicate that: 1) the surgeons scored the face validity of our modeled simulation environment very highly (4.68 0.48, using a 5-point Likert scale), 2) surgeon training enabled completion of tasks more quickly, and 3) the introduction of crisis scenarios negatively affected the surgeons\u27 objective performance. Taken together, our results underscore the need to develop realistic simulation environments that prepare young residents to respond to emergent events in the operating room
    corecore